
COMMUNICATIONS ON doi:10.3934/cpaa.2011.10.
PURE AND APPLIED ANALYSIS
Volume 10, Number 1, January 2011 pp.

THE OBSTACLE PROBLEM FOR MONGE-AMPÈRE TYPE
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Abstract. In this paper, we consider the obstacle problem for Monge-Apmère
type equations which include prescribed Gauss curvature equation as a special
case. We establish C1,1 regularity of the greatest viscosity solution in non-
convex domains.

1. Introduction. Let Ω be a bounded domain in R
n with C4 boundary ∂Ω. Given

a function g ∈ C3(Ω), we shall concern the following obstacle problem


















detD2u ≥ ψ(x, u,Du) in Ω,

u ≤ g in Ω,

u is locally convex in Ω,

u = ϕ on ∂Ω,

(1.1)

where g ≥ ϕ ∈ C4(∂Ω), ψ ∈ C3(Ω×R×R
n), ψ ≥ 0, Du = (Diu) and D

2u = (Diju)
denotes the gradient and Hessian of u, respectively. We say u is locally convex in
Ω, if u is convex in arbitrary ball Br(x) = {y : |y − x| < r} ⊂ Ω.

Denote A = {u : u is a viscosity solution of (1.1) }, see section 2 for the defini-
tion of viscosity solution. In the sequel, we may suppose the set A is nonempty.
Then we would like to study the maximization problem

u(x) =: sup
v∈A

v(x). (P )

Our background is from finding the greatest hypersurface with an obstacle, whose
Gauss-Kronecker curvature is bounded from below by a positive function. From the
viewpoint of geometric applications, it is of interest to study the Dirichlet problem
for Monge-Ampère equations in non-convex domains, See [9, 10, 11] and references
therein.

Using Perron’s method we show in the beginning of the next section

Theorem 1.1. If A is nonempty, then the maximizer u of (P ) is still in the class
A and in viscosity sense

detD2u(x) = ψ(x, u(x), Du(x)), x ∈ {x ∈ Ω : u(x) < g(x)}.
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In this paper we are interested in the regularity of the maximizer u of (P ). When
ψ = 1, ϕ = 0 and Ω is strictly convex, the problem (P ) has been studied by Lee [13].
He proved the C1,1 regularity of the viscosity solution and C1,α regularity of free
boundary. Another obstacle problem for Monge-Ampère equation was considered
by Savin [16], he studied the minimum nonnegative function u satisfying u = 1
on ∂Ω and Mu ≤ µ0, where Mu is the Monge-Ampère measure (see [12]) of u. In
[5], Caffarelli and McCann considered the free boundary problem of Monge-Ampère
type equations related to optimal transportation problem.

We say ψ(x, z, p) has fine property, if comparison principle holds for equation

detD2u = ψ(x, u,Du) in Ω, (1.2)

i.e., let u (resp. v) be a viscosity subsolution (resp. viscosity supersolution) to (1.2)
and u ≤ v on ∂G, then

u ≤ v in G,

where G ⊂ Ω is an arbitrary domain.
Many functions have the fine property, such as ψ = ψ(x) ≥ 0 and

ψ(x, z, p) = K(x)(1 + |p|2)
n+2

2 ,

where K(x) ≥ 0, see [17].
The following theorem shows the regularity of the maximizer of (P).

Theorem 1.2. Assume that g > ϕ on Ω and ψ > 0 has fine property and there
exists a function u ∈ A. If u ∈ C2(Ω), then the maximizer u ∈ C1,1(Ω).

After establish the C1,1 regularity, the obstacle problem reduces to the obstacle
problem for the uniformly elliptic equations.

Remark 1. In case ψ ≡ ψ(x) or, more generally (due to P.L. Lions; see [6]), when
ψ satisfies

0 ≤ ψ(x, z, p) ≤ C(1 + |p|2)n/2 for x ∈ Ω, z ≤ maxϕ, p ∈ R
n,

one can construct a strictly convex subsolution u ∈ C2(Ω) to (1.2) with u = ϕ on
∂Ω if Ω is strictly convex; this fails for non-convex domains.

Our approach can be applied to obstacle problem for more general Monge-
Ampère equations, see section 4 in the paper.

The paper is organized as follows. In section 2, we recall the definition of convex
viscosity solution and prove Theorem 1.1. In section 3, we consider a singularity
perturbation problem and prove Theorem 1.2. In section 4, we treat another Monge-
Ampère type equation with obstacle.

2. Existence and uniqueness of viscosity solution. We open this section by
recalling the notions of superjet and subjet and some facts for convex function. Then
we use Perron’s method to prove Theorem 1.1 and transfer the obstacle problem to
another form.

Definition 2.1. Let u ∈ C(Ω) and x̂ ∈ Ω.

(i). The second order superjet J2,+
Ω u(x̂) is the set of the (p,X) ∈ R

n × Sn such
that

u(x) ≤ u(x̂) + 〈p, x− x̂〉+
1

2
〈X(x− x̂), x− x̂〉+ o(|x− x̂|2), as x→ x̂ in Ω,

where Sn is the set of the symmetric n× n matrices.
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(ii). The second order subjet

J2,−
Ω u(x̂) = {(p,X) : (p,X) ∈ −J2,+

Ω (−u)(x̂)}.

We also introduce

J
′2,−
Ω u(x̂) = J2,−

Ω u(x̂) ∩ (Rn × Sn
+),

where Sn
+ is set of positive semidefinite symmetric n× n matrices.

The following lemma is proved in [1].

Lemma 2.2. Let u ∈ C(Ω). Then u is locally convex if and only if X ≥ 0 for every

(p,X) ∈ J2,+
Ω u(x) and every x ∈ Ω.

Definition 2.3. Let u ∈ C(Ω) be locally convex.
(i). A function u is said to be a viscosity solution of (1.1), if

detX ≥ ψ(x, u(x), p), (p,X) ∈ J2,+
Ω u(x), ∀x ∈ Ω, (2.1a)

u ≤ g in Ω, (2.1b)

u = ϕ on ∂Ω. (2.1c)

(ii). A function u is said to be a viscosity subsolution (resp. supersolution) of
(1.2), if for every x ∈ Ω

detX ≥ (≤)ψ(x, u(x), p), (p,X) ∈ J2,+
Ω u(x)

(

resp. J
′2,−
Ω u(x)

)

.

A function u is said to be a viscosity solution of (1.2) if it is both a viscosity
subsolution and supersolution.

Note that every classical solution is a viscosity solution.
In next theorem, we only need ψ ≥ 0 that means our equations may be degener-

ate.

Theorem 2.4. (i) Assume that there exists a function u ∈ A. Then

u(x) =: sup
v∈A

v(x)

is still in the class A and satisfies

detD2u(x) = ψ(x, u(x), Du(x)), x ∈ E =: {x ∈ Ω : u(x) < g(x)} (2.2)

in viscosity sense. If u ∈ C0,1(Ω), then u ∈ C0,1(Ω).
(ii) If ψ has fine property, then u is the unique function satisfying

max{u− g,−(detD2u− ψ(x, u,Du)} = 0 in Ω,

u ≥ u in Ω,

u is locally convex in Ω,

u = ϕ on ∂Ω,

(2.3)

in viscosity sense.

Proof. (i) Obviously, u is locally convex and satisfies (2.1b) and (2.1c). Equation
(2.1a) follows from Lemma 4.2 in [7].

Let h be the harmonic extension of ϕ in Ω, that is h satisfying

∆h = 0 in Ω, h = ϕ on ∂Ω. (2.4)
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Since u is locally convex, u is a viscosity subsolution to ∆u = 0 in Ω. By comparison
principle, u ≤ h on Ω. On the other hand, u ≤ u by the assumption. Note that
h = u = u on ∂Ω, thus for any x ∈ ∂Ω

Dνh(x) ≤ lim inf
t→0+

u(x)− u(x− tν)

t

≤ lim sup
t→0+

u(x)− u(x− tν)

t

≤ lim sup
t→0+

u(x)− u(x− tν)

t
,

where ν is the out normal to ∂Ω. Hence by the convexity of u,

‖u‖C0,1(Ω) ≤ C, (2.5)

where C depends only on ‖u‖C0,1(Ω), ‖ϕ‖C1(∂Ω) and Ω.

Next, we shall prove (2.2). If u fails to be a solution of

detD2u ≤ ψ(x, u,Du) in E, (2.6)

there will exist a point x0 ∈ E such that, we may assume x0 = 0,

detX > ψ(0, u(0), p) for some (p,X) ∈ J
′2,−
Ω u(0),

hence X > 0. Then by the continuity

uδ,γ(x) = u(0) + δ + 〈p, x〉+
1

2
〈Xx, x〉 − γ|x|2

is convex and satisfies detD2uδ,γ ≥ ψ and uδ,γ(x) ≤ g(x) in Br = {x : |x| < r} for
small r, δ, γ > 0. Since

u(x) ≥ u(0) + 〈p, x〉+
1

2
〈Xx, x〉+ o(|x|2),

if we choose δ = (r2/8)γ, then u(x) > uδ,γ(x) for r/2 ≤ |x| ≤ r if r is sufficiently
small and then, by Lemma 4.2 in [7], the function

U(x) =

{

max{u(x), uδ,γ(x)} if |x| < r,

u(x) otherwise,

is a viscosity solution to detD2u ≥ ψ. Note that U(x) is locally convex, U(x) ≤
g(x) and U(0) > u(0), this contradicts to the assumption of u. Thus (2.6) holds.
Combining (2.6) and (2.1a), we complete the proof of (2.2).

(ii) From above it is easy to see that u satisfy (2.3). Let u1, u2 be two solutions
to (2.3). Suppose there exists a point x0 ∈ Ω, such that u1(x0) < u2(x0). Let G be
a connected domain G ⊂ Ω containing x0 such that

u1(x) < u2(x) in G, u1 = u2 on ∂G.

Since u2 ≤ g in Ω, u1 < g in G. Thus in viscosity sense

detD2u2 ≥ ψ(x, u2, Du2) in G

and
detD2u1 = ψ(x, u1, Du1) in G.

By comparison principle, we have

u2 ≤ u1 in G,

this is a contradiction. We complete the proof.
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3. Singular perturbation problem and C1,1 regularity. To establish the C1,1

regularity for the greatest solution in Theorem 1.2, we consider the following singular
perturbation problem

{

detD2u = eβε(u−g)ψ(x, u,Du) in Ω,

u = ϕ on ∂Ω,
(3.1)

where

βε(z) =

{

0, z ≤ 0,

z3/ε, z > 0,

and ε ∈ (0, 1).

Theorem 3.1. Let ψ > 0 have fine property. Assume there exists a function
u ∈ A and u ∈ C2(Ω). Then for each ε ∈ (0, 1) there exists a unique solution
uε ∈ C3(Ω) ∩C4(Ω) to (3.1) satisfying

uε ≥ u in Ω (3.2)

and
‖uε‖C2(Ω) ≤ C, (3.3)

where C > 0 is independent of ε.

Proof. Since u ≤ g, u ∈ C2(Ω) is a subsolution to (3.1). Due to Theorem 1.1 of [9],
there exists a unique solution uε ∈ C3,α(Ω) of (3.1) satisfying (3.2). By the interior
regularity theory of elliptic equations, uε ∈ C4(Ω). Then we only need to show the
uniform estimates (3.3).

Since u ∈ A ∩ C2(Ω), then there exists a constant ν > 0 such that

D2u ≥ νI on Ω, (3.4)

where I is the identity matrix. Let h be the harmonic extension of ϕ in Ω. By the
maximum principle, we have

u ≤ uε ≤ h in Ω, u = uε = h on ∂Ω.

Since uε is convex, we have

|uε|+ |Duε| ≤ C1 on Ω, (3.5)

where the constant C1 > 0 depends only on Ω, n, ‖ϕ‖C1(∂Ω) and ‖u‖C1(Ω) and is

independent of ε. From (3.5), there exist constants ψ0, ψ1 (independent of ε) such
that

0 < ψ0 ≤ ψ(x, uε(x), Duε(x)) ≤ ψ1. (3.6)

(a) Bounds for |D2uε| on ∂Ω. Since g > h = uε on ∂Ω and uε ≤ h in Ω, there
exists a small constant δ > 0 (independent of ε) such that

βε(uε − g) = 0 in Ωδ,

where Ωδ = {x ∈ Ω : dist(x, ∂Ω) < δ}. Then

detD2uε = ψ(x, uε, Duε) in Ωδ, uε = ϕ on ∂Ω.

By the same procedure used to establish boundary estimates for second order deriva-
tives in Theorem 2.1 of [9], we have

|D2uε| ≤ C2 on ∂Ω, (3.7)

where the constant C2 > 0 depends on ‖ψ‖C2(Ω×[−C1,C1]×[−C1,C1]n)
, ‖ϕ‖C4(∂Ω),

‖u‖C2(Ω), Ω and n, and is independent of ε.
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(a) Bounds for |D2uε| in Ω. Firstly, we need the following lemma.

Lemma 3.2. There exists a constant c0 independent of ε such that

0 ≤ βε(uε(x)− g(x)) ≤ c0 in Ω. (3.8)

Proof. Let uε(x0) − g(x0) = sup
x∈Ω

(uε(x) − g(x)), without loss of generality, we may

suppose that x0 ∈ Ω. At x0, we have Duε(x0) = Dg(x0) and D
2uε(x0) ≤ D2g(x0),

and then

βε(uε − g)(x0) = log detD2uε(x0)− logψ(x0, uε(x0), Duε(x0))

≤ log detD2g(x0)− logψ(x0, uε(x0), Duε(x0))

≤ log detD2g(x0)− logψ0 =: c0,

where we have used (3.6) and the constant c0 > 0 is independent of ε. Hence the
lemma follows.

To simplify the notations, we will use u instead of uε from now on.
Set

W = max
x∈Ω, ξ∈Sn

{

Dξξu exp
{a

2
|D(u − g)|2 +

b

2
|x|2

}}

,

where a, b are positive constants to be determined later. In order to establish (3.3)
it suffices to derive a bound for W .

If W occurs on ∂Ω, then W can be estimated via our known estimates (3.7). So
we may assume W is achieved at a point x0 ∈ Ω and for some unit vector ξ ∈ S

n.
We may suppose ξ = e1 = (1, 0, · · · , 0), then D1ju(x0) = 0 for j > 1. By rotating
the coordinates {x2, · · · , xn}, we may assume D2u(x0) is diagonal. We may also
assume D11u(x0) ≥ D11g(x0), otherwise we are done. Let F (D2u) = log detD2u,
we have

(Fij) = (
∂F

∂uij
) = (D2u)−1,

∂2F

∂uij∂ukl
= Fij,kl = −FikFjl.

Let L be the linearized operator at x0

L = Fij(D
2u(x0))Dij .

Since W is achieved at x0, it follows that the function

h = logD11u+
a

2
|D(u − g)|2 +

b

2
|x|2

also attains its maximum at x0 for the constants a ≥ 1 and b > 0 to be determined
later, and consequently

Dh(x0) = 0 and D2h(x0) ≤ 0. (3.9)

Since (Fij(D
2u(x0))) is diagonal,

L(h)(x0) = (Fii(D
2u(x0)))Diih(x0) = (Diiu(x0))

−1Diih(x0) ≤ 0. (3.10)

Now,

Dih =
D11iu

D11u
+ aDk(u− g)Dki(u − g) + bxi, (3.11)

Diih =
D11iiu

D11u
−

(D11iu)
2

(D11u)2
+
∑

k

a(Dki(u− g))2

+ aDk(u− g)Dkii(u − g) + b.

(3.12)
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Rewrite equation (3.1) as

log detD2u = βε(u− g) + f(x, u,Du),

where f(x, u,Du) = logψ(x, u,Du), and differentiate it to obtain at x0,
∑

i

(Diiu)
−1Diiku = Dk(βε(u− g) + f) for all k, (3.13)

L(D11u)−
∑

ij

(D1iju)
2

DiiuDjju
=D11f + β′

ε(u− g)D11(u− g) + β′′
ε (u− g)(D1(u− g))2.

Since β′
ε, β

′′
ε ≥ 0 and D11u(x0) ≥ D11g(x0),

L(D11u) ≥
∑

ij

(D1iju)
2

DiiuDjju
+D11f. (3.14)

By replacing (3.12) into (3.10) and multiplying it by D11u(x0), we see that

0 ≥L(D11u)−
∑

i

(D11iu)
2

D11uDiiu
+ aD11u∆u− 2aD11u∆g

+
∑

i

aDk(u− g)
D11u

Diiu
Diiku+

∑

i

D11u

Diiu
(b− aDk(u− g)Diikg).

From (3.13) and (3.14), choosing

b = a sup
x∈Ω

|Dk(u− g)Diikg|,

in view of the convexity of u we infer that

0 ≥ D11f + a(D11u)
2 − 2aD11u∆g + aDk(u− g)D11uDk(βε(u− g) + f)

≥
∑

j

fpj
Dj11u+ (a+ fp1p1

)(D11u)
2 + aβ′

ε(u− g)|D(u − g)|2D11u

+ aDk(u − g)D11ufpj
Djku− Ca(1 +D11u).

Since Dh(x0) = 0 and (3.11), we have
∑

j

fpj
Dj11u+ aDk(u− g)D11ufpj

Djku = fpj
D11u(aDk(u − g)Dkjg − bxj).

Thus
0 ≥ (a+ fp1p1

)(D11u)
2 − Ca(1 +D11u).

Choosing
a = sup

x∈Ω
|fp1p1

(x, u(x), Du(x))| + 1,

then
0 ≥ (D11u)

2 − C(1 +D11u)

and hence (for a different C)
D11u(x0) ≤ C,

which implies
W ≤ C,

and hence
‖D2u‖L∞(Ω) ≤ C3, (3.15)

where the constant C3 is independent of ε.
Combining (3.5), (3.7) and (3.15), we complete the proof of (3.3).
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Proof of Theorem 1.2. According to the uniformly estimates (3.3), there exists a
subsequence uεk and a function u ∈ C1,1(Ω) such that

uεk → u in C1,α(Ω), ∀α ∈ (0, 1), as εk → 0.

Obviously, u ≤ u and the inequality u ≤ g in Ω follows from Lemma 3.2. Then
by the stable property of viscosity solution theory (see [7]), it is easy see that u is
a solution of (2.3). According to (ii) of Theorem 2.4, u is the greatest solution of
(1.1). Thus we complete the proof of Theorem 1.2.

In fact, u ∈ C3,α(E) for any α ∈ (0, 1), where E as in Theorem 2.4. This
follows from (i) of Theorem 2.4, Evans-Krylov estimates and Schauder estimates
for nonlinear elliptic equations, see [8] or [3].

4. Another Monge-Ampère type equations. We shall treat one more problem










max{(u− g),−(det(Diju− σij(x)) − ψ(x))} = 0 in Ω,

(Diju− σij) ≥ 0 in Ω,

u = ϕ on ∂Ω,

(4.1)

with g, ϕ, ψ and Ω as before, (σij(x)) ∈ C2(Ω) a symmetric matrix function.
Without loss of generality we can assume always that (σij) is nonnegative definite

and u is convex. The reason is that we can choose a very large number Λ, such that
ΛI + (σij) is nonnegative definite, then let u = v−Λ|x|2 and solve the problem for
v.

The Dirichlet problem for equation

det(Diju− σij) = ψ(x) in Ω, (4.2)

has been treated by Caffarelli, Nirenberg and Spruck [6], and by Li [14] for general
right hand side.

Proposition 1. Assume Ω is strictly convex, there exists a function u ∈ C3(Ω)
such that

u ≤ g, (Diju− σij) ≥ 0 and det(Diju− σij) ≥ ψ(x) in Ω (4.3)

and

u = ϕ on ∂Ω. (4.4)

Proof. Let u1 be a solution to (4.2) with u1 = ϕ on ∂Ω (see [6]) and u2 be a convex
solution to equation detD2u = 1 in Ω with u2 = 0 on ∂Ω. Let u = u1 + λu2 with
constant λ > 0, then u is a subsolution to (4.2). Since ϕ > g on ∂Ω, u2 < 0 in Ω
(see [4]) and u2 is strictly convex, u ≤ g by choosing large λ.

As before, we have

Theorem 4.1. Let u ∈ C2(Ω) satisfying (4.3) and (4.4), then there exists unique
function u ∈ C1,1(Ω) satisfying (4.1) and u ≥ u in Ω.

When ψ = 1, ϕ = 0, σij = 0 and Ω is strictly convex, this theorem was proved
by Lee [13]. In view of Proposition 1, Theorem 4.1 is an extension of results in [13],
too.
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Proof of Theorem 4.1. As in section 3, we consider the singulary perturbation prob-
lem

{

det(Diju− σij) = eβε(u−g)ψ(x) in Ω,
u = ϕ on ∂Ω,

(4.5)

where βε(·) as (3.1) and ε ∈ (0, 1).
Note that u is a subsolution of (4.5). By the same approach used in [9] and

[11], it follows that there exists unique solution u ≤ uε ∈ C3,α(Ω) to (4.5) for any
ε ∈ (0, 1). To complete the proof, we need to establish uniformly estimates similar
to (3.3). Mimicking the procedure in the proof of Theorem 3.1, we can estimate
‖uε‖C1(Ω) and bounds for D2uε on ∂Ω. To prove the bounds for D2uε in Ω, we

choose

W = max
x∈Ω, ξ∈Sn

{

Uξξ exp
{a

2
|D(u − g)|2 +

b

2
|x|2

}}

,

where a, b are positive constants to be determined later and

Uξξ(x) = (Diju(x)− σij(x))ξiξj .

The rest computation is similar and we omit it here.
Once the uniformly estimates for D2uε at hand, we conclude that there exists a

function u ∈ C1,1(Ω) satisfying (4.1). The uniqueness can be proved from classical
comparison principle, see the proof of (ii) of Theorem 2.4.

REFERENCES

[1] O. Alvarez, J.-M. Lasry and P.-L. Lions, Convex viscosity solutions and state constraints, J.
Math. Pures Appl., 76 (1997), 265–288.

[2] J. Bao, The obstacle problems for second order fully nonlinear elliptic equations with Neu-

mann boundary conditions, J. Partial Diff. Eqn., 3 (1992), 33–45.
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